Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of "preneoplastic antigen"-like molecules.
نویسندگان
چکیده
Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases.
منابع مشابه
Identification of the putative brain tumor antigen BF7/GE2 as the (de)toxifying enzyme microsomal epoxide hydrolase.
Malignant gliomas are the main cause of death from primary brain tumors. Despite surgery, radiation, and chemotherapy, patients have a median survival of less than a few years; therefore, it is clearly imperative to investigate new ways of treatment. The development of new therapeutic strategies for brain tumors is dependent on a better understanding of the differences between normal and tumora...
متن کامل(De)Toxifying Enzyme Microsomal Epoxide Hydrolase Identification of the Putative Brain Tumor Antigen BF7/GE2 as Updated Version
Malignant gliomas are the main cause of death from primary brain tumors. Despite surgery, radiation, and chemotherapy, patients have a median survival of less than a few years; therefore, it is clearly imperative to investigate new ways of treatment. The development of new therapeutic strategies for brain tumors is dependent on a better understanding of the differences between normal and tumora...
متن کاملProduction and Characterization of Murine Monoclonal Antibodies to Leishmania Gp63 Antigen
Background : Production of monoclonal antibodies to Leishmania antigens assists the identification and characterization of these organisms. Objective: Production of monoclonal antibodies against epitopes on the gp63. Methods: Two murine monoclonal antibodies to gp63 were produced and characterized. The reactions of both antibodies with soluble leishmanial antigens, purified gp63 and truncated r...
متن کاملEpoxide hydrolase: a marker for experimental hepatocarcinogenesis.
Rat liver chemical hepatocarcinogenesis, induced by interrupted feeding of 2-acetylaminofluorene, results in various cellular preneoplastic stages and finally in a hepatoma in about 70 to 90 percent of the rats. The putative precursors of hepatomas, called hyperplastic nodules, appear after 12 weeks of feeding and, after 16 weeks of feeding carcinogen, most of them are persistent. Epoxide hydro...
متن کاملMeasurement of Affinity Constant of Anti-human IgG Monoclonal Antibodies by an ELISA-based Method
Background: The affinity of an antibody to its antigen is a crucial parameter in its biological activity and performance of an immunoassay such as ELISA. Affinity of most IgG specific MAbs are often determined by methods which require labeling of either antigen or antibody, and are sometimes difficult to control, do not always lead to the expected signal and often result in immunological modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicology and applied pharmacology
دوره 260 1 شماره
صفحات -
تاریخ انتشار 2012